Книги по психологии

ПОСЛЕДОВАТЕЛЬНОСТИ ПОСЛЕДОВАТЕЛЬНОСТЕЙ
О - Об интеллекте

Мы видим все меньше и меньше временных изменений информа­ции по мере того, как она поднимается по иерархии зон коры головного мозга. В первичных визуальных зонах вроде V1 совокупность активных клеток быстро изменяется по мере того, как несколько раз в секунду на сетчатку поступают новые паттерны. А вот в визуальной зоне 1Т воз­бужденные клетки более стабильны. Что же происходит? Каждая об­ласть коры владеет определенным репертуаром последовательностей, подобным репертуару певца. Последовательности-песни могут быть о чем угодно: как шумит прибой, как выглядит лицо вашей матери, как пройти от вашего дома к магазину на углу, как произносится слово “поп­корн”, как тасовать колоду карт.

Мы даем имена песням, и каждая зона коры тоже дает имена всем последовательностям, которые ей известны. Это “имя” — группа клеток, чья коллективная активность обозначает объекты последовательности (пока не думайте о том, как выбирают клетки для того, чтобы обозначать последовательность, — с этим мы разберемся чуть позже). Означенные клетки будут активны, пока длится последовательность, и именно это “имя” передается вверх по иерархии. До пор пока входные сигналы яв­ляются частью прогнозируемой последовательности, зона коры голов­ного мозга посылает к высшим зонам одно и то же “имя”.

Зона, принимающая входные сигналы, словно отправляет наверх со­общение: “Вот имя последовательности, которую я вижу, слышу или осязаю. Отдельные ноты, контуры или качество поверхности не име­ют значения. Я обязательно вам сообщу, если произойдет что-то новое или непредвиденное”. Так, например, высшая зона зрительной иерар­хии сообщает ассоциативной зоне: “Я вижу лицо. Каждая саккада дает фиксацию на различных частях лица. Я вижу различные части лица в определенной последовательности, но это точно одно и то же лицо. Я вам сообщу, если встретится что-то новое”. Таким образом, предска­зуемой последовательности событий соответствует “имя” — постоян­ный паттерн импульсов от возбужденных клеток. Продвигаясь вверх по иерархической пирамиде, мы будем видеть это снова и снова. Одна зона может заниматься распознаванием звуков, из которых состоят фо­немы: она посылает сигнал, представляющий фонемы, в более высокую зону иерархии. Следующая зона распознает последовательность фонем и формирует из них слова. Следующая, более высокая, зона распознает слова и формирует из них фразы и так далее. Не забывайте, что в более низких зонах “последовательность” может быть относительно простой, например, кромка чего-либо, передвигающаяся в пространстве.

Давая имена прогнозируемой последовательности сигналов в каж­дой зоне иерархии, мы получаем все более и более высокую стабиль­ность наверху иерархии. Так создаются инвариантные репрезентации.

Обратный процесс происходит, когда сигнал перемещается по об­ратной связи вниз по иерархии: устойчивые репрезентации “развора­чиваются” в последовательности сигналов. Предположим, вы решили вспомнить содержание Геттисбергской речи Линкольна, которую учи­ли в седьмом классе. В одной из верхних зон коры вашего головного мозга хранится модель, которая является репрезентацией известной речи Линкольна. Сначала модель разветвляется на последовательности фраз. Зоной ниже каждая фраза разворачивается в последовательнос­ти слов. На этом этапе сигнал расщепляется и движется в зрительную и моторную зоны коры головного мозга. Спускаясь по моторному пути, каждое слово расщепляется на усвоенную последовательность фонем. В конце концов, на самом низком уровне, каждая фонема расщепля­ется на последовательность артикуляционных команд, обеспечиваю­щих произнесение звуков. Чем ниже по иерархии мы спускаемся, тем быстрее меняются сигналы. Одна цельная репрезентация, хранящаяся в высшей зоне иерархии, преобразуется в продолжительную и сложную последовательность звуков речи.

По мере того как информационный поток спускается вниз по иерар­хии, инвариантность приобретает особое значение. Если вы хотите на­печатать Геттисбергскую речь, не произнося ее вслух, то начнете с той же самой репрезентации из высшей зоны. В следующей зоне сигнал раз­делится на фразы, потом — на слова. До этого момента никаких разли­чий не наблюдается. Но далее моторная зона коры головного мозга из­бирает иной путь. Слова расщепляются на буквы, а затем формируются мышечные команды, поступающие к вашим пальцам с тем, чтобы вы начали печатать. Итак, усвоенная вами речь Линкольна представлена в головном мозге в виде инвариантной репрезентации. Нет никакой раз­ницы в том, будете ли вы ее произносить, печатать на компьютере или записывать от руки. Обратите внимание: вам не нужно запоминать речь дважды (раз для письменного воспроизведения и второй — для устного произношения). Единожды усвоенная информация о речи Линкольна может привести к различным поведенческим проявлениям. В любой зоне коры головного мозга инвариантный сигнал может разветвляться и передвигаться вниз по иерархии различными путями.

Как еще одно проявление эффективной работы головного мозга, репрезентации простых объектов из нижней части иерархии корковых зон могут использоваться повторно для формирования разных после­довательностей сигналов в высших зонах. Например, нам не нужно за­поминать один набор слов и фонем для воспроизведения вслух Геттис­бергского обращения и совершенно другой набор — для речи Мартина Лютера Кинга “У меня есть мечта”, хотя эти два выступления имеют некоторые общие слова. Иерархия вложенных последовательностей обеспечивает повторное использование объектов более низкого уровня (например, слов, фонем, букв). Это исключительно эффективный спо­соб хранения информации о внешнем мире и его структуре, и он очень сильно отличается от принципов работы компьютера.

В сенсорных областях происходит такое же разворачивание после­довательностей, как и в моторных зонах. Этот процесс позволяет вам ощущать и воспринимать все многообразие объектов окружающей среды. Когда вы подходите к холодильнику за порцией мороженого, зрительная зона коры головного мозга активизируется на многих уров­нях. На высшем уровне вы постоянно “видите” холодильник. На более низких уровнях зрительное ожидание подразделяется на серию более специфических, локализированных на отдельных объектах зрительных сигналов. Зрительное восприятие холодильника складывается из фик­саций взгляда на ручке дверцы, самой дверце, прикрепленных магни­тах, детских рисунках и так далее. За несколько миллисекунд, которые проходят в период саккады от одного свойства холодильника к другому, прогнозы результатов каждой саккады устремляются вниз по зритель­ной иерархии. До тех пор пока прогнозы от саккады до саккады оправ­дываются, высшие зоны зрительного восприятия твердо уверены в том, что вы действительно видите перед собой свой холодильник. Обратите внимание, что в отличие от строгого порядка слов в Геттисбергском об­ращении, та последовательность паттернов, с которой вы имеете дело в случае с холодильником, может оказаться изменчивой. Поток вход­ных сигналов и прогнозы о них зависят от ваших действий. Значит, в случаях, подобных этому, разветвляющиеся сигналы не являются стабильной последовательностью, но по сути своей процесс все равно остается одним и тем же: стабильные, мало меняющиеся репрезентации высшего уровня, которые разветвляются в быстро меняющиеся паттер­ны низших корковых зон.

Тот способ, которым мы запоминаем последовательности и пред­ставляем их под каким-либо именем во время передвижения инфор­мационных потоков вниз и вверх по иерархии коры головного мозга, чем-то напоминает иерархию армейских команд. Генерал отдает приказ: “На зиму перебросьте военные части во Флориду”. Простая команда высшего уровня по мере ее передвижения вниз по армейского иерархии расщепляется на все более детализированные последовательности ко­манд. Подчиненные генерала знают, что команда требует определенной последовательности шагов, таких как приготовления к передислока­ции, транспортировка во Флориду, подготовка к обустройству на новом месте. Каждый из этих шагов разбивается, в свою очередь, на еще более специфические задания, которые адресуются подчиненным. На нижней ступени иерархии будут стоять тысячи рядовых солдат, предпринима­ющих десятки тысяч физических шагов для того, чтобы военные части были переведены во Флориду. Что касается обратной связи, то на каж­дом уровне формируются отчеты о проделанной работе. В результате генерал получает доклад: “Передислокация во Флориду осуществлена успешно”, но при этом не вникает во все подробности инициированного им процесса.

У данного правила есть исключение. Если возникает проблема, кото­рая не может быть разрешена подчиненными на соответствующем низ­ком уровне, запрос передается к более высоким уровням иерархии до тех пор, пока решение не будет найдено. Но офицер, который знает, как ре­шить возникшую проблему, не рассматривает ее как исключение. То, что является неожиданной проблемой для его подчиненных, для него самого является следующим по списку заданием — он лишь отдает подчинен­ным новые команды. Кора головного мозга функционирует по анало­гичному принципу. Когда происходит неожиданное событие (поступают спрогнозированные сигналы), информация передается в более высокие по иерархии зоны коры головного мозга до тех пор, пока возникшая труд­ность будет разрешена. Если более низкие зоны не в состоянии спрогно­зировать поступающие сигналы, они классифицируют их как ошибку и передают в высшие “командные центры”. Процедура повторяется до тех пор, пока следующая зона не сможет распознать поступающий сигнал.

# $ $ $ $

Каждая зона коры головного мозга устроена так, что старается со­хранять и активизировать последовательности сигналов. Однако такое представление о мозге является слишком упрощенным. Давайте немно­го усложним нашу модель.

Сигналы поступают в зоны коры головного мозга по тысячам или даже миллионам аксонов. Эти аксоны идут от самых разных областей и по ним передаются самые разные последовательности сигналов. По­тенциальное количество сигналов на одной тысяче аксонов превышает количество молекул во Вселенной. Каждая зона коры головного моз­га на протяжении всего времени своего существования воспринимает лишь небольшую часть этого невероятного количества сигналов.

Возникает вопрос: из чего состоят последовательности сигналов, со­храняющиеся в различных зонах неокортекса? Я предполагаю, что сна­чала зона классифицирует входные сигналы на основе ограниченного числа возможных вариантов, а потом формирует последовательности.

Представьте себе, что вы — зона коры головного мозга. Ваша задача состоит в том, чтобы рассортировать цветные листы бумаги. У вас есть десять ведер, каждое из которых помечено определенным цветом. Одно ведро предназначено для листов зеленого цвета, другое — для красных, следующее — для желтых и так далее. Каждый из предлагаемых вам лис­тов немного отличается по цвету. Поскольку количество существующих в мире цветов не ограничено, то не найдется даже двух листов бумаги одинакового цвета. Иногда очень легко определить, в какое из ведерок нужно отправить лист, а порой наоборот — очень трудно. Лист, окрашен­ный в промежуточный между красным и оранжевым цвет, можно бро­сить и в то, и в другое ведро, но вам нужно выбрать только одно, даже если вы сделаете это наугад. Задача данного упражнения состоит в том, чтобы показать, как мозг должен классифицировать сигналы. Зоны коры головного мозга именно этим и занимаются, с той лишь разницей, что у них не имеется контейнеров, в которые они бы помещали сигналы.

А сейчас вам выпадает шанс найти последовательность. Вы замечае­те, что листы очень часто следуют в таком порядке: красный, красный, пурпурный, оранжевый, зеленый. Вы присваиваете этой последователь­ности имя “ккпоз”. Обратите внимание, что распознавание какой бы то ни было последовательности было бы невозможным, если бы вы сна­чала не рассортировали все листы по десяти ведрам. Не рассортировав листы по десяти из возможных категорий, вы бы не смогли определить, что две последовательности одинаковы.

Сейчас вы собираетесь проанализировать все входные сигналы — цветные листы бумаги, соответствующие в нашей аналогии сигналам, получаемым из низших зон коры головного мозга. Вы сортируете их и пытаетесь обнаружить последовательности. Оба шага — сортировка и формирование последовательностей — являются необходимыми для создания инвариантных репрезентаций, и любая зона коры головного мозга именно этим и занимается.

Процесс формирования последовательностей окупается с лихвой, когда входные сигналы неоднозначны, как, например, лист бумаги, ко­торый можно назвать и красным, и оранжевым. Допустим, вам предсто­ит определиться, какое ведро выбрать для этого листа, даже если вы не уверены наверняка в своем выборе. Зная наиболее вероятную последо­вательность для серии входных сигналов, вы сможете использовать эти знания для классификации неоднозначных входных сигналов. Если вы считаете, что попали на “ккпоз”-последовательность, поскольку вам по­пались два красных, зеленый и пурпурный цвета, то у вас формируется ожидание, что следующий цвет будет оранжевым. Но оказывается, что следующий лист совсем не оранжевый, он, скорее, нечто между красным и оранжевым. Вполне может быть, что он даже более близок к красному цвету, чем к оранжевому. Вы же ожидали “ккпоз”-последовательность, вы знакомы с ней, поэтому положите лист в ведро, предназначенное для оранжевых листов. В сомнительных случаях вы наверняка воспользуе­тесь контекстом известных последовательностей.

Этот феномен постоянно подтверждается в повседневной жизни. Когда люди разговаривают, то часто “глотают” отдельные слова, понять которые вне контекста было бы невозможно. Тем не менее такая особен­ность устной речи не мешает собеседникам прекрасно понимать друг друга. Бывает, невозможно прочесть отдельно взятое написанное от руки слово, смысл которого проясняется при прочтении целой фразы. В подавляющем числе таких случаев вы не осознаете, что восполняете недостающую информацию, исходя из усвоенных ранее последователь­ностей сигналов. Вы слышите то, что ожидаете услышать, и видите то, что ожидаете увидеть, тогда, когда услышанное и увиденное вами соот­ветствует прошлому опыту.

Обратите внимание, что запоминание последовательностей не толь­ко облегчает интерпретацию неоднозначных входных сигналов, но и позволяет спрогнозировать, какой сигнал окажется следующим. Вы­сшие зоны коры головного мозга сообщают зонам более низкого поряд­ка, чего им следует ожидать дальше. Возвращаясь к примеру с сорти­ровкой бумаги, вы могли бы сказать человеку, передающему вам листы: “Послушай, если ты не можешь никак решить, какого цвета лист по­давать мне следующим, то, насколько я помню, это должен быть оран­жевый”. Распознавая последовательности сигналов, вышестоящая зона коры предсказывает, каким будет следующий сигнал, и сообщает зонам нижестоящим, чего им следует ожидать.

Зона коры головного мозга не только усваивает определенные после­довательности, но и модифицирует уже имеющиеся классификации. До­пустим, вы начали заполнять ведра зеленого, желтого, красного, пурпур­ного и оранжевого цветов. Вы уже приготовились к поступлению листов в последовательности “ккпоз” (или похожей комбинации этих цветов). Но что, если ваши ожидания не оправдаются? Что, если всякий раз, когда вы столкнетесь с подобием данной последовательности, вместо пурпурного вам предоставят лист цвета индиго? Скорее всего, вы измените надпись на соответствующем ведре с “Пурпурного” на “Индиго”. Так вы приспосаб­ливаетесь к меняющимся обстоятельствам и уходите от двусмысленности. И все это благодаря поразительной гибкости неокортекса.

Подобные изменения уже сложившихся классификаций происходят в зонах коры головного мозга на протяжении всей вашей жизни. Дан­ный процесс осуществляется на основе взаимодействия последователь­ностей сигналов; он же положен и в основу обучения. Все зоны коры головного мозга очень пластичны, т. е. информация, сохраняющаяся в них, модифицируется под влиянием прошлого опыта и восприятия текущей ситуации. Создавая новые классификации и новые последова­тельности, вы запоминаете мир.

И наконец, давайте обсудим, как эти классификации и прогно­зы взаимодействуют с высшими зонами коры головного мозга. Здесь следует представить вам еще одну функцию коры головного мозга — трансляцию воспринятого в зону на уровень выше (в нашем случае это будет передача вверх по иерархии листа с отметкой “ккпоз”). Для сле­дующего уровня буквы сами по себе мало что означают. Название — это просто сигнал, подлежащий последующей обработке и сопоставлению с остальными сигналами, классификации и последующему размещению в последовательности более высокого порядка. Точно так же, как и вы, эта высшая зона следит за последовательностями, которые восприни­мает. В какой-то момент она может обратиться к вам: “Эй, послушайте, если вы не знаете, что мне подавать следующим, то, насколько мне из­вестно, это должна быть последовательность “жжкзж”. Фактически, это прямое указание на то, что вы должны искать в данный момент в своем потоке входящих сигналов. Вы будете изо всех сил стараться распоз­нать составляющие компоненты известной вам последовательности.

Поскольку многие из нас сталкивались с понятием классификации сигналов, принятым в теории искусственного интеллекта и использу­емым при описании зрительного восприятия, давайте рассмотрим, чем отличаются эти сигналы от функционирования коры головного мозга. Пытаясь обучить компьютер распознавать объекты, исследователи, как правило, создают шаблон, например, изображение чашки или какую-то прототипную форму чашки, а потом программируют машину на поиск соответствия входящей информации шаблону. В случае значительно­го сходства выдается ответ, что обнаружена чашка. Отличие реального интеллекта состоит в том, что в нашем мозге нет таких шаблонов, а сиг­налы, поступающие в верхние зоны коры головного мозга, совсем не похожи на картинки. Вы не запоминаете моментальных изображений, воспринимаемых вашей сетчаткой, или ушами, или тактильными ре­цепторами, расположенными по всей поверхности вашей кожи. Иерар­хическое строение коры головного мозга обеспечивает распределение информации об объекте по всей иерархии — воспоминание о том или ином явлении или событии, предмете или человеке не сохраняется в ка - ком-то одном месте. Кроме того, каждая зона из образующих иерархию формирует инвариантные запоминания, а в определенном поле неокор­текса возникает последовательность инвариантных репрезентаций, ко­торые, в свою очередь, тоже являются последовательностями инвари­антных запоминаний. В головном мозге не сохраняются изображения чашки или каких-либо других объектов внешней среды.

В отличие от камеры ваш мозг запоминает окружающую среду та­кой, какая она есть, а не такой, какой она выглядит. Когда вы думаете о мире, то вспоминаете последовательности сигналов, соответству­ющих свойствам объектов, их функционированию и характеристикам ощущений в определенный момент времени. Последовательности, в рам­ках которых вы воспринимаете объекты окружающей действительности, отражают инвариантную структуру самого мира. Порядок, в котором вы воспринимаете составляющие внешнего мира, предопределяется его структурой. Например, вы можете попасть в самолет по трапу, но не на­прямую от кассы. Последовательностями, в которых вы воспринимаете мир, представлена его реалистичная структура, именно она и формиру­ется в коре головного мозга.

Не забывайте, однако, что инвариантная репрезентация в любой зоне коры головного мозга может превратиться в подробный прогноз того, какие ощущения возникнут в органах чувств, с одновременной ретрансляцией сигнала вниз по иерархии. Точно так же инвариантная репрезентация в моторной коре головного мозга может перейти в по­дробные ситуационно-специфические моторные команды посредством передачи сигнала вниз по иерархии.